A ''Continuous'' Limit of the Complementary Bannai-Ito Polynomials: Chihara Polynomials

dc.contributor.authorGenest, V.X.
dc.contributor.authorVinet, L.
dc.contributor.authorZhedanov, A.
dc.date.accessioned2019-02-11T16:34:49Z
dc.date.available2019-02-11T16:34:49Z
dc.date.issued2014
dc.description.abstractA novel family of −1 orthogonal polynomials called the Chihara polynomials is characterized. The polynomials are obtained from a ''continuous'' limit of the complementary Bannai-Ito polynomials, which are the kernel partners of the Bannai-Ito polynomials. The three-term recurrence relation and the explicit expression in terms of Gauss hypergeometric functions are obtained through a limit process. A one-parameter family of second-order differential Dunkl operators having these polynomials as eigenfunctions is also exhibited. The quadratic algebra with involution encoding this bispectrality is obtained. The orthogonality measure is derived in two different ways: by using Chihara's method for kernel polynomials and, by obtaining the symmetry factor for the one-parameter family of Dunkl operators. It is shown that the polynomials are related to the big −1 Jacobi polynomials by a Christoffel transformation and that they can be obtained from the big q-Jacobi by a q→−1 limit. The generalized Gegenbauer/Hermite polynomials are respectively seen to be special/limiting cases of the Chihara polynomials. A one-parameter extension of the generalized Hermite polynomials is proposed.uk_UA
dc.description.sponsorshipV.X.G. holds a fellowship from the Natural Sciences and Engineering Research Council of Canada (NSERC). The research of L.V. is supported in part by NSERC.uk_UA
dc.identifier.citationA ''Continuous'' Limit of the Complementary Bannai-Ito Polynomials: Chihara Polynomials / V.X. Genest, L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 25 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 33C45
dc.identifier.otherDOI:10.3842/SIGMA.2014.038
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146825
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleA ''Continuous'' Limit of the Complementary Bannai-Ito Polynomials: Chihara Polynomialsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
79-Genest.pdf
Розмір:
416.6 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: