Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors

dc.contributor.authorSheftel, M.B.
dc.contributor.authorMalykh, A.A.
dc.date.accessioned2019-02-21T07:22:47Z
dc.date.available2019-02-21T07:22:47Z
dc.date.issued2013
dc.description.abstractWe demonstrate how a combination of our recently developed methods of partner symmetries, symmetry reduction in group parameters and a new version of the group foliation method can produce noninvariant solutions of complex Monge-Ampère equation (CMA) and provide a lift from invariant solutions of CMA satisfying Boyer-Finley equation to non-invariant ones. Applying these methods, we obtain a new noninvariant solution of CMA and the corresponding Ricci-flat anti-self-dual Einstein-Kähler metric with Euclidean signature without Killing vectors, together with Riemannian curvature two-forms. There are no singularities of the metric and curvature in a bounded domain if we avoid very special choices of arbitrary functions of a single variable in our solution. This metric does not describe gravitational instantons because the curvature is not concentrated in a bounded domain.uk_UA
dc.description.sponsorshipWe thank our referees for their encouragement and criticism which hopefully improved our paper. The research of M.B. Sheftel was supported in part by the research grant from Bo˘gazi¸ci University Scientific Research Fund (BAP), research project No. 6324.uk_UA
dc.identifier.citationPartner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors / M.B. Sheftel, A.A. Malykh // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 28 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 35Q75; 83C15
dc.identifier.otherDOI: http://dx.doi.org/10.3842/SIGMA.2013.075
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149367
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titlePartner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectorsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
075-Sheftel.pdf
Розмір:
439.35 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: