Some combinatorial problems in the theory of symmetric inverse semigroups

dc.contributor.authorUmar, A.
dc.date.accessioned2019-06-15T16:43:30Z
dc.date.available2019-06-15T16:43:30Z
dc.date.issued2010
dc.description.abstractLet Xn={1,2,⋯,n} and let α:Domα⊆Xn→Imα⊆Xn be a (partial) transformation on Xn. On a partial one-one mapping of Xn the following parameters are defined: the height of α is h(α)=|Imα|, the right [left] waist of α is w+(α)=max(Imα)[w−(α)=min(Imα)], and fix of α is denoted by f(α), and defined by f(α)=|{x∈Xn:xα=x}|. The cardinalities of some equivalences defined by equalities of these parameters on In, the semigroup of partial one-one mappings of Xn, and some of its notable subsemigroups that have been computed are gathered together and the open problems highlighted.uk_UA
dc.description.sponsorshipThe ideas for this work were formed during a one month stay at Wilfrid LaurierUniversity in the Summer of 2007.2This paper is based on the talk I gave at the 22nd BCC Conference, University ofSt Andrews, July 2009.uk_UA
dc.identifier.citationSome combinatorial problems in the theory of symmetric inverse semigroups / A. Umar // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 113–124. — Бібліогр.: 32 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2000 Mathematics Subject Classification:20M18, 20M20, 05A10, 05A15
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/154602
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleSome combinatorial problems in the theory of symmetric inverse semigroupsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
09-Umar.pdf
Розмір:
202.92 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: