Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves

dc.contributor.authorKanazawa, A.
dc.date.accessioned2019-02-18T16:29:46Z
dc.date.available2019-02-18T16:29:46Z
dc.date.issued2017
dc.description.abstractWe prove the Doran-Harder-Thompson conjecture in the case of elliptic curves by using ideas from SYZ mirror symmetry. The conjecture claims that when a Calabi-Yau manifold X degenerates to a union of two quasi-Fano manifolds (Tyurin degeneration), a mirror Calabi-Yau manifold of X can be constructed by gluing the two mirror Landau-Ginzburg models of the quasi-Fano manifolds. The two crucial ideas in our proof are to obtain a complex structure by gluing the underlying affine manifolds and to construct the theta functions from the Landau-Ginzburg superpotentials.uk_UA
dc.description.sponsorshipThe author would like to thank Yu-Wei Fan, Andrew Harder, Hansol Hong and Siu-Cheong Lau for useful conversations on related topics. Special thanks go to the referees for their valuable comments and improvements to this article. This research was supported by the Kyoto University Hakubi Project. Part of this work was carried out during the author’s stay at BIRS in the fall of 2016.uk_UA
dc.identifier.citationDoran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves / A. Kanazawa // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 53D37; 14J33; 14J32; 14J45; 14D06
dc.identifier.otherDOI:10.3842/SIGMA.2017.024
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148604
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleDoran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curvesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
024-Kanazawa.pdf
Розмір:
461.18 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: