Connected Lie Groupoids are Internally Connected and Integral Complete in Synthetic Differential Geometry

dc.contributor.authorBurke, M.
dc.date.accessioned2019-02-18T15:39:03Z
dc.date.available2019-02-18T15:39:03Z
dc.date.issued2017
dc.description.abstractWe extend some fundamental definitions and constructions in the established generalisation of Lie theory involving Lie groupoids by reformulating them in terms of groupoids internal to a well-adapted model of synthetic differential geometry. In particular we define internal counterparts of the definitions of source path and source simply connected groupoid and the integration of A-paths. The main results of this paper show that if a classical Hausdorff Lie groupoid satisfies one of the classical connectedness conditions it also satisfies its internal counterpart.uk_UA
dc.description.sponsorshipThe author is very grateful for the constructive comments of fered by and the important corrections indicated by the editor and referees. The author would like to acknowledge the assistance of Richard Garner, my Ph.D. supervisor at Macquarie University Sydney, who provided valuable comments and insightful discussions in the genesis of this work. In addition the author is grateful for the support of an International Macquarie University Research Excellence Scholarship.uk_UA
dc.identifier.citationConnected Lie Groupoids are Internally Connected and Integral Complete in Synthetic Differential Geometry / M. Burke // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 27 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 22E60; 22E65; 03F55; 18B25; 18B40
dc.identifier.otherDOI:10.3842/SIGMA.2017.007
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148557
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleConnected Lie Groupoids are Internally Connected and Integral Complete in Synthetic Differential Geometryuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
007-Burke.pdf
Розмір:
496.71 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: