An Expansion Formula for Decorated Super-Teichmüller Spaces

dc.contributor.authorMusiker, Gregg
dc.contributor.authorOvenhouse, Nicholas
dc.contributor.authorZhang, Sylvester W.
dc.date.accessioned2025-12-30T15:51:03Z
dc.date.issued2021
dc.description.abstractMotivated by the definition of super-Teichmüller spaces, and Penner-Zeitlin's recent extension of this definition to decorated super-Teichmüller spaces, as examples of super Riemann surfaces, we use the super Ptolemy relations to obtain formulas for super λ-lengths associated to arcs in a bordered surface. In the special case of a disk, we can give combinatorial expansion formulas for the super λ-lengths associated to diagonals of a polygon in the spirit of Ralf Schiffler's 𝑇-path formulas for type 𝐴 cluster algebras. We further connect our formulas to the super-friezes of Morier-Genoud, Ovsienko, and Tabachnikov, and obtain partial progress towards defining super cluster algebras of type 𝐴ₙ. In particular, following Penner-Zeitlin, we are able to get formulas (up to signs) for the μ-invariants associated to triangles in a triangulated polygon, and explain how these provide a step towards understanding odd variables of a super cluster algebra.
dc.description.sponsorshipThe authors would like to thank the support of the NSF grant DMS-1745638 and the University of Minnesota UROP program. We would also like to thank Misha Shapiro and Leonid Chekhov for inspiring conversations, as well as the anonymous referees for their helpful feedback.
dc.identifier.citationAn Expansion Formula for Decorated Super-Teichmüller Spaces. Gregg Musiker, Nicholas Ovenhouse and Sylvester W. Zhang. SIGMA 17 (2021), 080, 34 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.080
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 13F60; 17A70; 30F60
dc.identifier.otherarXiv:2102.09143
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211343
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleAn Expansion Formula for Decorated Super-Teichmüller Spaces
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
080-Musiker.pdf
Розмір:
628.82 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: