The Malgrange Form and Fredholm Determinants

dc.contributor.authorBertola, M.
dc.date.accessioned2019-02-18T15:57:07Z
dc.date.available2019-02-18T15:57:07Z
dc.date.issued2017
dc.description.abstractWe consider the factorization problem of matrix symbols relative to a closed contour, i.e., a Riemann-Hilbert problem, where the symbol depends analytically on parameters. We show how to define a function τ which is locally analytic on the space of deformations and that is expressed as a Fredholm determinant of an operator of ''integrable'' type in the sense of Its-Izergin-Korepin-Slavnov. The construction is not unique and the non-uniqueness highlights the fact that the tau function is really the section of a line bundle.uk_UA
dc.description.sponsorshipThe author wishes to thank Oleg Lisovyy for asking a very pertinent question on the representation of the Malgrange form in terms of Fredholm determinants. Part of the thinking was done during the author’s stay at the “Centro di Ricerca Matematica Ennio de Giorgi” at the Scuola Normale Superiore in Pisa, workshop on “Asymptotic and computational aspects of complex dif ferential equations” organized by G. Filipuk, D. Guzzetti and S. Michalik. The author wishes to thank the organizers and the Institute for providing an opportunity of fruitful exchange.uk_UA
dc.identifier.citationThe Malgrange Form and Fredholm Determinants / M. Bertola // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 15 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 35Q15; 47A53; 47A68
dc.identifier.otherDOI:10.3842/SIGMA.2017.046
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148566
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleThe Malgrange Form and Fredholm Determinantsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
046-Bertola.pdf
Розмір:
360.67 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: