On the Number of τ-Tilting Modules over Nakayama Algebras

dc.contributor.authorGao, Hanpeng
dc.contributor.authorSchiffler, Ralf
dc.date.accessioned2025-12-15T15:17:33Z
dc.date.issued2020
dc.description.abstractLet Λʳₙ be the path algebra of the linearly oriented quiver of type A with n vertices modulo the r-th power of the radical, and let Λ˜ʳₙ be the path algebra of the cyclically oriented quiver of type à with n vertices modulo the r-th power of the radical. Adachi gave a recurrence relation for the number of τ-tilting modules over Λʳₙ. In this paper, we show that the same recurrence relation also holds for the number of τ-tilting modules over Λ˜ʳₙ. As an application, we give a new proof for a result by Asai on recurrence formulae for the number of support τ-tilting modules over Λʳₙ and Λ˜ʳₙ.
dc.description.sponsorshipThe first author was partially supported by NSFC(GrantNo.11971225). The second author was supported by the NSF grant DMS-1800860 and by the University of Connecticut. The authors also thank the referees for their useful and detailed suggestions.
dc.identifier.citationOn the Number of τ-Tilting Modules over Nakayama Algebras. Hanpeng Gao and Ralf Schiffler. SIGMA 16 (2020), 058, 13 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.058
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 16G20; 16G60
dc.identifier.otherarXiv:2002.02990
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210692
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleOn the Number of τ-Tilting Modules over Nakayama Algebras
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
058-Gao.pdf
Розмір:
342.07 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: