Rigorous Asymptotics for the Lamé and Mathieu Functions and their Respective Eigenvalues with a Large Parameter

dc.contributor.authorOgilvie, K.
dc.contributor.authorOlde Daalhuis, A.B.
dc.date.accessioned2019-02-13T17:43:22Z
dc.date.available2019-02-13T17:43:22Z
dc.date.issued2015
dc.description.abstractBy application of the theory for second-order linear differential equations with two turning points developed in [Olver F.W.J., Philos. Trans. Roy. Soc. London Ser. A 278 (1975), 137-174], uniform asymptotic approximations are obtained in the first part of this paper for the Lamé and Mathieu functions with a large real parameter. These approximations are expressed in terms of parabolic cylinder functions, and are uniformly valid in their respective real open intervals. In all cases explicit bounds are supplied for the error terms associated with the approximations. Approximations are also obtained for the large order behaviour for the respective eigenvalues. We restrict ourselves to a two term uniform approximation. Theoretically more terms in these approximations could be computed, but the coefficients would be very complicated. In the second part of this paper we use a simplified method to obtain uniform asymptotic expansions for these functions. The coefficients are just polynomials and satisfy simple recurrence relations. The price to pay is that these asymptotic expansions hold only in a shrinking interval as their respective parameters become large; this interval however encapsulates all the interesting oscillatory behaviour of the functions. This simplified method also gives many terms in asymptotic expansions for these eigenvalues, derived simultaneously with the coefficients in the function expansions. We provide rigorous realistic error bounds for the function expansions when truncated and order estimates for the error when the eigenvalue expansions are truncated. With this paper we confirm that many of the formal results in the literature are correct.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications. The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html. The authors thank the referees for very helpful comments and suggestions for improving the presentation.uk_UA
dc.identifier.citationRigorous Asymptotics for the Lamé and Mathieu Functions and their Respective Eigenvalues with a Large Parameter / K. Ogilvie, A.B. Olde Daalhuis // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 29 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 33E10; 34E05; 34E20
dc.identifier.otherDOI:10.3842/SIGMA.2015.095
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147150
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleRigorous Asymptotics for the Lamé and Mathieu Functions and their Respective Eigenvalues with a Large Parameteruk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
095-Ogilvie.pdf
Розмір:
487.18 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: