Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures
| dc.contributor.author | Koelink, E. | |
| dc.contributor.author | Román, P. | |
| dc.date.accessioned | 2019-02-14T18:23:07Z | |
| dc.date.available | 2019-02-14T18:23:07Z | |
| dc.date.issued | 2016 | |
| dc.description.abstract | A matrix-valued measure Θ reduces to measures of smaller size if there exists a constant invertible matrix M such that MΘM∗ is block diagonal. Equivalently, the real vector space A of all matrices T such that TΘ(X)=Θ(X)T∗ for any Borel set X is non-trivial. If the subspace Ah of self-adjoints elements in the commutant algebra A of Θ is non-trivial, then Θ is reducible via a unitary matrix. In this paper we prove that A is ∗-invariant if and only if Ah=A, i.e., every reduction of Θ can be performed via a unitary matrix. The motivation for this paper comes from families of matrix-valued polynomials related to the group SU(2)×SU(2) and its quantum analogue. In both cases the commutant algebra A=Ah⊕iAh is of dimension two and the matrix-valued measures reduce unitarily into a 2×2 block diagonal matrix. Here we show that there is no further non-unitary reduction. | uk_UA |
| dc.description.sponsorship | This paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications. The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html. We thank I. Zurri´an for pointing out a similar example to Example 4.1 to the first author. The research of Pablo Rom´an is supported by the Radboud Excellence Fellowship. We would like to thank the anonymous referees for their comments and remarks, that have helped us to improve the paper. | uk_UA |
| dc.identifier.citation | Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures / E. Koelink, P. Román // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 12 назв. — англ. | uk_UA |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2010 Mathematics Subject Classification: 33D45; 42C05 | |
| dc.identifier.other | DOI:10.3842/SIGMA.2016.008 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/147427 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут математики НАН України | uk_UA |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | uk_UA |
| dc.title | Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 008-Koelink.pdf
- Розмір:
- 358.53 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: