Regular variation in the branching random walk
dc.contributor.author | Iksanov, A. | |
dc.contributor.author | Polotskiy, S. | |
dc.date.accessioned | 2009-11-10T14:49:23Z | |
dc.date.available | 2009-11-10T14:49:23Z | |
dc.date.issued | 2006 | |
dc.description.abstract | initial ancestor located at the origin of the real line. For n = 0, 1, . . . , let Wn be the moment generating function of Mn normalized by its mean. Denote by AWn any of the following random variables: maximal function, square function, L1 and a.s. limit W, supn≥0 |W − Wn|, supn≥0 |Wn+1 − Wn|. Under mild moment restrictions and the assumption that {W1 > x} regularly varies at ∞, it is proved that P{AWn > x} regularly varies at ∞ with the same exponent. All the proofs given are non-analytic in the sense that these do not use Laplace–Stieltjes transforms. The result on the tail behaviour of W is established in two distinct ways. | en_US |
dc.identifier.citation | Regular variation in the branching random walk / A. Iksanov, S. Polotskiy // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 38–54. — Бібліогр.: 25 назв.— англ. | en_US |
dc.identifier.issn | 0321-3900 | |
dc.identifier.udc | 519.21 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/4440 | |
dc.language.iso | en | en_US |
dc.publisher | Інститут математики НАН України | en_US |
dc.status | published earlier | en_US |
dc.title | Regular variation in the branching random walk | en_US |
dc.type | Article | en_US |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 2006_12_1-2_5.pdf
- Розмір:
- 225.89 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 1.82 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: