Rational Solutions of the Painlevé-II Equation Revisited

dc.contributor.authorMiller, P.D.
dc.contributor.authorSheng, Y.
dc.date.accessioned2019-02-18T18:15:38Z
dc.date.available2019-02-18T18:15:38Z
dc.date.issued2017
dc.description.abstractThe rational solutions of the Painlevé-II equation appear in several applications and are known to have many remarkable algebraic and analytic properties. They also have several different representations, useful in different ways for establishing these properties. In particular, Riemann-Hilbert representations have proven to be useful for extracting the asymptotic behavior of the rational solutions in the limit of large degree (equivalently the large-parameter limit). We review the elementary properties of the rational Painlevé-II functions, and then we describe three different Riemann-Hilbert representations of them that have appeared in the literature: a representation by means of the isomonodromy theory of the Flaschka-Newell Lax pair, a second representation by means of the isomonodromy theory of the Jimbo-Miwa Lax pair, and a third representation found by Bertola and Bothner related to pseudo-orthogonal polynomials. We prove that the Flaschka-Newell and Bertola-Bothner Riemann-Hilbert representations of the rational Painlevé-II functions are explicitly connected to each other. Finally, we review recent results describing the asymptotic behavior of the rational Painlevé-II functions obtained from these Riemann-Hilbert representations by means of the steepest descent method.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Symmetries and Integrability of Dif ference Equations. The full collection is available at http://www.emis.de/journals/SIGMA/SIDE12.html. P.D. Miller was supported during the preparation of this paper by the National Science Foundation under grant DMS-1513054. The authors are grateful to Thomas Bothner for many useful discussions.uk_UA
dc.identifier.citationRational Solutions of the Painlevé-II Equation Revisited / P.D. Miller, Y. Sheng // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 39 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 33E17; 34M55; 34M56; 35Q15; 37K15; 37K35; 37K40
dc.identifier.otherDOI:10.3842/SIGMA.2017.065
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148731
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleRational Solutions of the Painlevé-II Equation Revisiteduk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
065-Miller.pdf
Розмір:
1.12 MB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: