Orbit Representations from Linear mod 1 Transformations

dc.contributor.authorCorreia Ramos, C.
dc.contributor.authorMartins, N.
dc.contributor.authorPinto, P.R.
dc.date.accessioned2019-02-18T13:25:02Z
dc.date.available2019-02-18T13:25:02Z
dc.date.issued2012
dc.description.abstractWe show that every point x0∈[0,1] carries a representation of a C∗-algebra that encodes the orbit structure of the linear mod 1 interval map fβ,α(x)=βx+α. Such C∗-algebra is generated by partial isometries arising from the subintervals of monotonicity of the underlying map fβ,α. Then we prove that such representation is irreducible. Moreover two such of representations are unitarily equivalent if and only if the points belong to the same generalized orbit, for every α∈[0,1[ and β≥1.uk_UA
dc.description.sponsorshipFirst author acknowledges CIMA-UE for financial support. The other authors were partially supported by the Fundacao para a Ciencia e a Tecnologia through the Program POCI 2010/FEDER.uk_UA
dc.identifier.citationOrbit Representations from Linear mod 1 Transformations / C. Correia Ramos, N. Martins, P.R. Pinto // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 17 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 46L55; 37B10; 46L05
dc.identifier.otherDOI: http://dx.doi.org/10.3842/SIGMA.2012.029
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148466
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleOrbit Representations from Linear mod 1 Transformationsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
029-Ramos.pdf
Розмір:
361.41 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: