Orbit Representations from Linear mod 1 Transformations
dc.contributor.author | Correia Ramos, C. | |
dc.contributor.author | Martins, N. | |
dc.contributor.author | Pinto, P.R. | |
dc.date.accessioned | 2019-02-18T13:25:02Z | |
dc.date.available | 2019-02-18T13:25:02Z | |
dc.date.issued | 2012 | |
dc.description.abstract | We show that every point x0∈[0,1] carries a representation of a C∗-algebra that encodes the orbit structure of the linear mod 1 interval map fβ,α(x)=βx+α. Such C∗-algebra is generated by partial isometries arising from the subintervals of monotonicity of the underlying map fβ,α. Then we prove that such representation is irreducible. Moreover two such of representations are unitarily equivalent if and only if the points belong to the same generalized orbit, for every α∈[0,1[ and β≥1. | uk_UA |
dc.description.sponsorship | First author acknowledges CIMA-UE for financial support. The other authors were partially supported by the Fundacao para a Ciencia e a Tecnologia through the Program POCI 2010/FEDER. | uk_UA |
dc.identifier.citation | Orbit Representations from Linear mod 1 Transformations / C. Correia Ramos, N. Martins, P.R. Pinto // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 17 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 46L55; 37B10; 46L05 | |
dc.identifier.other | DOI: http://dx.doi.org/10.3842/SIGMA.2012.029 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/148466 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Orbit Representations from Linear mod 1 Transformations | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: