Метод локализации точки экстремума унимодальной функции

dc.contributor.authorШелудько, Г.А.
dc.contributor.authorУгримов, С.В.
dc.date.accessioned2016-04-25T17:07:55Z
dc.date.available2016-04-25T17:07:55Z
dc.date.issued2016
dc.description.abstractРассмотрена комбинация численных методов типа Regula falsi и секущих для прямого поиска экстремума унимодальной функции общего вида на заданном отрезке. Предложенная комбинация не требует какого-либо предварительного анализа характера функции для начала поиска ее экстремума. Реализуется своеобразный метод с минимальной глубиной памяти в направлении поиска. Он является универсальным и независимым от класса минимизируемой функции. Принятый апостериорный подход позволяет отыскивать экстремум недифференцируемых, в том числе алгоритмически заданных функций. Метод отличается большой общностью. Он обеспечивает гарантированную сходимость к экстремальной точке благодаря использованию средневзвешенного способа реализации решения. Если даже минимизируемая функция на заданном отрезке оказывается не унимодальной, то всегда предлагаемый метод осуществляет получение хотя бы относительного минимума. Изложенная методика может быть легко распространена на многомерный случай.Проведен массовый вычислительный эксперимент на гладких и негладких функциях. Рассмотрено применение предложенного метода к выпукло-вогнутым с разрывом первого рода функциям, к разнонаклоненным функциям, а также эмпирически заданным функциям сложной геометрии. Показано, что индекс эффективности комбинации методов превышает таковой у отдельно взятых методов с теми же начальными условиями.uk_UA
dc.description.abstractРозглянуті триточкові методи пошуку екстремуму кусково-негладкої функції. Особлива увага приділяється застосуванню методів розв'язання задач з поганою обумовленістю, що викликана різнонахильністю функції, яка мінімізується. Завдяки комбінації лінійних методів Regula falsi та пересічних хорд вдалося помітно підвищити ефективність пошукового засобу. На тестових прикладах продемонстровано ефект запропонованого підходу.uk_UA
dc.description.abstractThe combination of numerical methods such as Regula falsi method and secant method for direct search of extremum of unimodal function on the given interval is considered. The proposed combination does not require any prior analysis of character of the functions to begin its search for an extremum. The unique method with a minimum of memory depth in the search area is implemented. It is universal and independent of the class of minimized function. Accepted a posteriori approach allows to find the extremum of non-differentiable functions, including algorithmically defined functions. The method is quite general. It provides a guaranteed convergence to the extreme point due to the use ща the weighted average method for realizing solutions. If the minimized function in a given interval is not unimodal, the suggested method is always provides obtaining at least a relative minimum. The stated method can be easily extended to the multidimensional case. The massive computational experiments on smooth and non-smooth functions are carried out. The application of the proposed method to the convex-concave functions with a first-order gap, to functions with a asymmetrical character in vicinity of solution, as well as empirically given functions of complex geometry. It is shown that the efficiency index of combination methods exceeds index of the individual methods with the same initial conditions.uk_UA
dc.identifier.citationМетод локализации точки экстремума унимодальной функции / Г.А. Шелудько, С.В. Угримов // Проблемы машиностроения. — 2016. — Т. 19, № 1. — С. 44-53. — Бібліогр.: 18 назв. — рос.uk_UA
dc.identifier.issn0131-2928
dc.identifier.udc519.853.3
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/99260
dc.language.isoruuk_UA
dc.publisherІнстиут проблем машинобудування ім. А.М. Підгорного НАН Україниuk_UA
dc.relation.ispartofПроблемы машиностроения
dc.statuspublished earlieruk_UA
dc.subjectПрикладная математикаuk_UA
dc.titleМетод локализации точки экстремума унимодальной функцииuk_UA
dc.title.alternativeThe localization method of extremum point for unimodal functionuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
07-Sheludko.pdf
Розмір:
551.47 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: