F-electron spectral function of the Falicov-Kimball model and the Wiener-Hopf sum equation approach

dc.contributor.authorShvaika, A.M.
dc.contributor.authorFreericks, J.K.
dc.date.accessioned2017-06-06T13:42:24Z
dc.date.available2017-06-06T13:42:24Z
dc.date.issued2008
dc.description.abstractWe derive an alternative representation for the f-electron spectral function of the Falicov-Kimball model from the original one proposed by Brandt and Urbanek. In the new representation, all calculations are restricted to the real time axis, allowing us to go to arbitrarily low temperatures. The general formula for the retarded Green's function involves two determinants of continuous matrix operators that have the Toeplitz form. By employing the Wiener-Hopf sum equation approach and Szeg¨ o's theorem, we can derive exact analytic formulas for the large-time limits of the Green's function; we illustrate this for cases when the logarithm of characteristic function (which de nes the continuous Toeplitz matrix) does and does not wind around the origin. We show how accurate these asymptotic formulas are to the exact solutions found from extrapolating matrix calculations to the zero discretization size limit.uk_UA
dc.description.abstractОтримано нове представлення для спектральної функцiї f-електронiв моделi Фалiкова-Кiмбала, яке альтернативне оригiнальному представленню Брандта i Урбанека. У новому представленнi усi розрахунки виконуються тiльки на дiйснiй часовiй осi, що дозволяє розглядати як завгодно низькi температури. Загальний вираз для запiзнюючої функцiї Ґрiна включає два детермiнанти неперервних матричних операторiв зi структурою типу Теплiца. Застосовуючи дискретний пiдхiд Вiнера-Гопфа i теорему Сеґо, отримано точнi аналiтичнi формули для довгочасової поведiнки функцiй Ґрiна; розглянуто випадки, коли логарифм характеристичної функцiї (яка визначає неперервну матрицю Теплiца) робить i не робить виток навколо початку координат. Показано наскiльки точними є данi асимптотичнi вирази у порiвняннi з точними розв’язками, якi отримуються при екстраполяцiї прямих матричних розрахункiв до границi нульової дискретизацiї.uk_UA
dc.description.sponsorshipIt is with great pleasure that we honor Prof. Stasyuk with this contribution. This publication is based on work supported by Award No. UKP2{2697{LV{06 of the U.S. Civilian Research & Development Foundation (CRDF). J.K.F. also acknowledges support by the National Science Foundation under grant number DMR{0705266.uk_UA
dc.identifier.citationF-electron spectral function of the Falicov-Kimball model and the Wiener-Hopf sum equation approach / A.M. Shvaika, J.K. Freericks // Condensed Matter Physics. — 2008. — Т. 11, № 3(55). — С. 425-442. — Бібліогр.: 25 назв. — англ.uk_UA
dc.identifier.issn1607-324X
dc.identifier.otherPACS: 71.10.-w, 71.27.+a, 71.30.+h, 02.30.Rz
dc.identifier.otherDOI:10.5488/CMP.11.3.425
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/119339
dc.language.isoenuk_UA
dc.publisherІнститут фізики конденсованих систем НАН Україниuk_UA
dc.relation.ispartofCondensed Matter Physics
dc.statuspublished earlieruk_UA
dc.titleF-electron spectral function of the Falicov-Kimball model and the Wiener-Hopf sum equation approachuk_UA
dc.title.alternativeСпектральна функцiя f-електронiв для моделi Фалiкова-Кiмбала i дискретний пiдхiд Вiнера-Гопфаuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
04-Shvaika.pdf
Розмір:
380.29 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: