Multivariate convergence-targeted operator for the genetic algorithm

dc.contributor.authorShadura, O.
dc.contributor.authorPetrenko, A.
dc.contributor.authorSvistunov, S.
dc.date.accessioned2019-04-23T19:42:51Z
dc.date.available2019-04-23T19:42:51Z
dc.date.issued2017
dc.description.abstractOptimization of complex particle transport simulation packages could be managed using genetic algorithms as a tuning instrument for learning statistics and behavior of multi-objective optimisation functions. Combination of genetic algorithm and unsupervised machine learning could significantly increase convergence of algorithm to true Pareto Front (PF). We tried to apply specific multivariate analysis operator that can be used in case of expensive fitness function evaluations, in order to speed-up the convergence of the "black-box" optimization problem. The results delivered in the article shows that current approach could be used for any type of genetic algorithm and deployed as a separate genetic operator.uk_UA
dc.description.abstractCкладні пакети моделювання транспорту частинок можна оптимізувати за допомогою генетичних алгоритмів, що дає змогу застосовувати для таких задач підходи статистичного навчання та методи оптимізації декількох цільових функцій. Поєднання генетичного алгоритму та неконтрольованого машинного навчання значно підвищує збіжність алгоритму до істинного парето-фронту. У межах багатофакторного аналізу запропоновано додатковий оператор, який може бути застосований для задач оптимізації багатоцільових функцій, що потребують великого обсягу ресурсів та часу, зокрема для пришвидшення збіжності задачі оптимізації "чорного ящика". Отримані результати показують, що запропонований підхід можна використовувати для генетичного алгоритму будь-якого типу, а додатковий оператор розглядати як окремий генетичний оператор.uk_UA
dc.description.abstractСложные пакеты моделирования транспорта частиц можно оптимизировать с помощью генетических алгоритмов, что позволяет применять для таких задач подходы статистического обучения и методы оптимизации нескольких целевых функций. Сочетание генетического алгоритма и неконтролируемого машинного обучения может значительно повышает сходимость алгоритма к истинному парето-фронта. В рамках многофакторного анализа предложен дополнительный оператор, который может быть применен для задач оптимизации многоцелевых функций, требующих большого объема ресурсов и времени, в частности для ускорения сходимости задачи оптимизации "черного ящика". Полученные результаты показывают, что предложенный подход можно использовать для генетического алгоритма любого типа, а дополнительный оператор рассматривать как отдельный генетический оператор.uk_UA
dc.identifier.citationMultivariate convergence-targeted operator for the genetic algorithm / O. Shadura, A. Petrenko, S. Svistunov // Системні дослідження та інформаційні технології. — 2017. — № 1. — С. 126-140. — Бібліогр.: 17 назв. — англ.uk_UA
dc.identifier.issn1681–6048
dc.identifier.otherDOI: https://doi.org/10.20535/SRIT.2308-8893.2017.4.10
dc.identifier.udc519.85, 539.3
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/151069
dc.language.isoenuk_UA
dc.publisherНавчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН Україниuk_UA
dc.relation.ispartofСистемні дослідження та інформаційні технології
dc.statuspublished earlieruk_UA
dc.subjectМетоди аналізу та управління системами в умовах ризику і невизначеностіuk_UA
dc.titleMultivariate convergence-targeted operator for the genetic algorithmuk_UA
dc.title.alternativeБагатофакторний конвергенційно-націлений оператор для генетичного алгоритмуuk_UA
dc.title.alternativeМногофакторный конвергенционо-нацеленный оператор для генетического алгоритмаuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
10-Shadura.pdf
Розмір:
418.67 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: