Abelian doppelsemigroups

dc.contributor.authorZhuchok, A.V.
dc.contributor.authorKnauer, K.
dc.date.accessioned2023-02-27T16:24:23Z
dc.date.available2023-02-27T16:24:23Z
dc.date.issued2018
dc.description.abstractA doppelsemigroup is an algebraic system consisting of a set with two binary associative operations satisfying certain identities. Doppelsemigroups are a generalization of semigroups and they have relationships with such algebraic structures as doppelalgebras, duplexes, interassociative semigroups, restrictive bisemigroups, dimonoids and trioids. This paper is devoted to the study of abelian doppelsemigroups. We show that every abelian doppelsemigroup can be constructed from a left and right commutative semigroup and describe the free abelian doppelsemigroup. We also characterize the least abelian congruence on the free doppel-semigroup, give examples of abelian doppelsemigroups and find conditions under which the operations of an abelian doppelsemi-group coincide.uk_UA
dc.description.sponsorshipThe paper was written during the research stay of the first author at the University of Aix-Marseille as a part of the French Government fellowship.uk_UA
dc.identifier.citationAbelian doppelsemigroups / A.V. Zhuchok, K. Knauer // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 290–304. — Бібліогр.: 31 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2010 MSC: 08B20, 20M10, 20M50, 17A30.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/188415
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleAbelian doppelsemigroupsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
08-Zhuchok.pdf
Розмір:
335.45 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: