Mystic Reflection Groups

dc.contributor.authorBazlov, Y.
dc.contributor.authorBerenstein, A.
dc.date.accessioned2019-02-11T16:21:38Z
dc.date.available2019-02-11T16:21:38Z
dc.date.issued2014
dc.description.abstractThis paper aims to systematically study mystic reflection groups that emerged independently in the paper [Selecta Math. (N.S.) 14 (2009), 325-372] by the authors and in the paper [Algebr. Represent. Theory 13 (2010), 127-158] by Kirkman, Kuzmanovich and Zhang. A detailed analysis of this class of groups reveals that they are in a nontrivial correspondence with the complex reflection groups G(m,p,n). We also prove that the group algebras of corresponding groups are isomorphic and classify all such groups up to isomorphism.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa. The full collection is available at http://www.emis.de/journals/SIGMA/InfiniteAnalysis2013.html. We thank Ken Brown for bringing the paper [2] to our attention, and Alexander Premet for stimulating discussions. The present paper was started when both authors were research members of the Mathematical Sciences Research Institute. We thank the Institute and the organizers of the Noncommutative Algebraic Geometry and Representation Theory program for creating an atmosphere conducive for research. We acknowledge partial support of the LMS Research in Pairs grant ref. 41224. The second named author was partially supported by the NSF grant DMS-1101507.uk_UA
dc.identifier.citationMystic Reflection Groups / Y. Bazlov, A. Berenstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 2 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 16G99; 20F55; 16S80
dc.identifier.otherDOI:10.3842/SIGMA.2014.040
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146818
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleMystic Reflection Groupsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
77-Bazlov.pdf
Розмір:
339.75 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: