Асимптотична оцінка глибинних класифікаторів на основі моделі зсуву розташування

dc.contributor.authorГалкін, О.А.
dc.date.accessioned2016-04-05T11:58:15Z
dc.date.available2016-04-05T11:58:15Z
dc.date.issued2015
dc.description.abstractДослiджується асимптотична поведiнка непараметричних класифiкаторiв симплiцiальної, напiвпросторової та просторової глибини при вiдповiдних умовах регулярностi. Дослiдження проводиться для побудови класифiкатора максимальної глибини, коли всi апрiорнi ймовiрностi конкуруючих класiв є рiвними та задовольняється модель зсуву розташування. Побудований класифiкатор максимальної глибини не залежить вiд спецiальної параметричної форми роздiлової поверхнi та класифiкує елемент даних до класу, вiдносно якого цей елемент має максимальну глибину розташування. Дослiджено випадок нерiвних апрiорних ймовiрностей, коли рiзнi множини даних можуть не належати до спiльного сiмейства елiптичних розподiлiв.uk_UA
dc.description.abstractИсследуется асимптотическое поведение непараметрических классификаторов симплициальной, полупространственной и пространственной глубины при соответствующих условиях регулярности. Исследование проводится для построения классификатора максимальной глубины, когда все априорные вероятности конкурирующих классов равны и удовлетворяется модель смещения расположения. Построенный классификатор максимальной глубины не зависит от специальной параметрической формы разделительной поверхности и классифицирует элемент данных к классу, относительно которого этот элемент имеет максимальную глубину расположения. Исследован случай неравных априорных вероятностей, когда различные множества данных могут не принадлежать общему семейству эллиптических распределений.uk_UA
dc.description.abstractThe asymptotic behavior of non-parametric simplicial depth, half-space depth, and spatial depth classifiers is studied under appropriate regularity conditions. The research is carried out for the construction of a maximum depth classifier, when all a priori probabilities of all the competing classes are equal, and the location shift model holds. The constructed maximum depth classifier does not depend on the special parametric form of the dividing surface and classifies the data item to a class, with respect to which the element has a maximum depth of location. The case of unequal a priori probabilities is studied, when different data sets may not belong to the common family of elliptical distributions.uk_UA
dc.identifier.citationАсимптотична оцінка глибинних класифікаторів на основі моделі зсуву розташування / О.А. Галкін // Доповіді Національної академії наук України. — 2015. — № 11. — С. 30-35. — Бібліогр.: 7 назв. — укр.uk_UA
dc.identifier.issn1025-6415
dc.identifier.udc519.7
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/97944
dc.language.isoukuk_UA
dc.publisherВидавничий дім "Академперіодика" НАН Україниuk_UA
dc.relation.ispartofДоповіді НАН України
dc.statuspublished earlieruk_UA
dc.subjectІнформатика та кібернетикаuk_UA
dc.titleАсимптотична оцінка глибинних класифікаторів на основі моделі зсуву розташуванняuk_UA
dc.title.alternativeАсимптотическая оценка глубинных классификаторов на основе модели смещения расположенияuk_UA
dc.title.alternativeAsymptotic estimate of depth-based classifiers within the location shift modeluk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
07-Galkin.pdf
Розмір:
796.56 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: