Multispecies Weighted Hurwitz Numbers

dc.contributor.authorHarnad, J.
dc.date.accessioned2019-02-13T18:00:06Z
dc.date.available2019-02-13T18:00:06Z
dc.date.issued2015
dc.description.abstractThe construction of hypergeometric 2D Toda τ-functions as generating functions for weighted Hurwitz numbers is extended to multispecies families. Both the enumerative geometrical significance of multispecies weighted Hurwitz numbers, as weighted enumerations of branched coverings of the Riemann sphere, and their combinatorial significance in terms of weighted paths in the Cayley graph of Sn are derived. The particular case of multispecies quantum weighted Hurwitz numbers is studied in detail.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Exact Solvability and Symmetry Avatars in honour of Luc Vinet. The full collection is available at http://www.emis.de/journals/SIGMA/ESSA2014.html. This work is an extension of a joint project [11, 12] with M. Guay-Paquet, in which the notion of infinite parametric families of weighted Hurwitz numbers was first introduced, combined with the notion of signed multispecies Hurwitz numbers as introduced in [15] with A.Yu. Orlov. The author would like to thank both these co-authors for helpful discussions. Work supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Qu´ebec – Nature et technologies (FRQNT).uk_UA
dc.identifier.citationMultispecies Weighted Hurwitz Numbers / J. Harnad // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 30 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 05A15; 14H30; 33C70; 57M12
dc.identifier.otherDOI:10.3842/SIGMA.2015.097
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147164
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleMultispecies Weighted Hurwitz Numbersuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
097-Harnad.pdf
Розмір:
465.48 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: