Natural and Projectively Invariant Quantizations on Supermanifolds

dc.contributor.authorLeuther, T.
dc.contributor.authorRadoux, F.
dc.date.accessioned2019-02-11T15:28:17Z
dc.date.available2019-02-11T15:28:17Z
dc.date.issued2011
dc.description.abstractThe existence of a natural and projectively invariant quantization in the sense of P. Lecomte [Progr. Theoret. Phys. Suppl. (2001), no. 144, 125-132] was proved by M. Bordemann [math.DG/0208171], using the framework of Thomas-Whitehead connections. We extend the problem to the context of supermanifolds and adapt M. Bordemann's method in order to solve it. The obtained quantization appears as the natural globalization of the pgl(n+1|m)-equivariant quantization on Rn|m constructed by P. Mathonet and F. Radoux in [arXiv:1003.3320]. Our quantization is also a prolongation to arbitrary degree symbols of the projectively invariant quantization constructed by J. George in [arXiv:0909.5419] for symbols of degree two.uk_UA
dc.description.sponsorshipIt is a pleasure to thank P. Mathonet for fruitful discussions. We also thank the referees for suggestions leading to great improvements of the original paper. Finally, F. Radoux thanks the Belgian FNRS for his research fellowship.uk_UA
dc.identifier.citationNatural and Projectively Invariant Quantizations on Supermanifolds / T. Leuther, F. Radoux // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 53B05; 53B10; 53D50; 58A50
dc.identifier.otherDOI:10.3842/SIGMA.2011.034
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146803
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleNatural and Projectively Invariant Quantizations on Supermanifoldsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
034-Leuther.pdf
Розмір:
368.62 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: