Heteroclinic Orbits and Nonintegrability in Two-Degree-of-Freedom Hamiltonian Systems with Saddle-Centers

dc.contributor.authorYagasaki, K.
dc.contributor.authorYamanaka, S.
dc.date.accessioned2025-12-03T14:23:57Z
dc.date.issued2019
dc.description.abstractWe consider a class of two-degree-of-freedom Hamiltonian systems with saddle-centers connected by heteroclinic orbits and discuss some relationships between the existence of transverse heteroclinic orbits and nonintegrability. By the Lyapunov center theorem, there is a family of periodic orbits near each of the saddle-centers, and the Hessian matrices of the Hamiltonian at the two saddle-centers are assumed to have the same number of positive eigenvalues. We show that if the associated Jacobian matrices have the same pair of purely imaginary eigenvalues, then the stable and unstable manifolds of the periodic orbits intersect transversely on the same Hamiltonian energy surface when sufficient conditions obtained in previous work for real-meromorphic nonintegrability of the Hamiltonian systems hold; if not, then these manifolds intersect transversely on the same energy surface, have quadratic tangencies or do not intersect whether the sufficient conditions hold or not. Our theory is illustrated for a system with a quartic single-well potential, and some numerical results are given to support the theoretical results.
dc.description.sponsorshipThis work was partially supported by the Japan Society for the Promotion of Science, Kakenhi Grant Numbers JP17H02859 and JP17J01421. The authors are grateful to Masayuki Asaoka for pointing out the fact stated in Proposition 3.1. The idea of its proof is also due to him. They also thank the anonymous referees, especially for introducing the references [6, 31] to them.
dc.identifier.citationHeteroclinic Orbits and Nonintegrability in Two-Degree-of-Freedom Hamiltonian Systems with Saddle-Centers / K. Yagasaki, S. Yamanaka // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 32 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2019.049
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 37J30; 34C28; 37C29
dc.identifier.otherarXiv: 1907.01161
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210173
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleHeteroclinic Orbits and Nonintegrability in Two-Degree-of-Freedom Hamiltonian Systems with Saddle-Centers
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
049-Yagasaki.pdf
Розмір:
567.79 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: