Loops in SU(2), Riemann Surfaces, and Factorization, I

dc.contributor.authorBasor, E.
dc.contributor.authorPickrell, D.
dc.date.accessioned2019-02-15T18:42:42Z
dc.date.available2019-02-15T18:42:42Z
dc.date.issued2016
dc.description.abstractIn previous work we showed that a loop g:S¹→SU(2) has a triangular factorization if and only if the loop g has a root subgroup factorization. In this paper we present generalizations in which the unit disk and its double, the sphere, are replaced by a based compact Riemann surface with boundary, and its double. One ingredient is the theory of generalized Fourier-Laurent expansions developed by Krichever and Novikov. We show that a SU(2) valued multiloop having an analogue of a root subgroup factorization satisfies the condition that the multiloop, viewed as a transition function, defines a semistable holomorphic SL(2,C) bundle. Additionally, for such a multiloop, there is a corresponding factorization for determinants associated to the spin Toeplitz operators defined by the multiloop.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Asymptotics and Universality in Random Matrices, Random Growth Processes, Integrable Systems and Statistical Physics in honor of Percy Deift and Craig Tracy. The full collection is available at http://www.emis.de/journals/SIGMA/Deift-Tracy.html.uk_UA
dc.identifier.citationLoops in SU(2), Riemann Surfaces, and Factorization, I / E. Basor, D. Pickrell // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 22E67; 47A68; 47B35
dc.identifier.otherDOI:10.3842/SIGMA.2016.025
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147722
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleLoops in SU(2), Riemann Surfaces, and Factorization, Iuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
025-Basor.pdf
Розмір:
471.86 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: