Representations of U(2∞) and the Value of the Fine Structure Constant
| dc.contributor.author | Klink, W.H. | |
| dc.date.accessioned | 2025-11-19T12:10:38Z | |
| dc.date.issued | 2005 | |
| dc.description.abstract | A relativistic quantum mechanics is formulated in which all of the interactions are in the four-momentum operator and Lorentz transformations are kinematic. Interactions are introduced through vertices, which are bilinear in fermion and antifermion creation and annihilation operators, and linear in boson creation and annihilation operators. The fermion-antifermion operators generate a unitary Lie algebra, whose representations are fixed by a first-order Casimir operator (corresponding to baryon number or charge). Eigenvectors and eigenvalues of the four-momentum operator are analyzed, and exact solutions in the strong coupling limit are sketched. A simple model shows how the fine structure constant might be determined for the QED vertex. | |
| dc.identifier.citation | Representations of U(2∞) and the Value of the Fine Structure Constant / W.H. Klink // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 7 назв. — англ. | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2005.028 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2000 Mathematics Subject Classification: 22D10; 81R10; 81T27 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/209332 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | Representations of U(2∞) and the Value of the Fine Structure Constant | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: