On a Yang-Mills Type Functional

dc.contributor.authorGherghe, C.
dc.date.accessioned2025-12-02T09:29:07Z
dc.date.issued2019
dc.description.abstractWe study a functional that derives from the classical Yang-Mills functional and Born-Infeld theory. We establish its first variation formula and prove the existence of critical points. We also obtain the second variation formula.
dc.description.sponsorshipThe author thanks the referees for very carefully reading a first version of the paper and for their useful suggestions. This work is partially supported by a Grant of the Ministry of Research and Innovation, CNCS - UEFISCDI, Project Number PN-III-P4-ID-PCE-2016-0065, within PNCDI III.
dc.identifier.citationOn a Yang-Mills Type Functional / C. Gherghe // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 4 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2019.022
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 58E15; 81T13; 53C07
dc.identifier.otherarXiv: 1811.01517
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210053
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleOn a Yang-Mills Type Functional
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
022-Gherghe.pdf
Розмір:
285.78 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: