Количественная форма C-свойства Лузина
| dc.contributor.author | Кротов, В.Г. | |
| dc.date.accessioned | 2020-02-11T18:00:26Z | |
| dc.date.available | 2020-02-11T18:00:26Z | |
| dc.date.issued | 2010 | |
| dc.description.abstract | Доведено наступне твердження, яке є кількісною формою теореми Лузіна про C-властивість. Нехай (X,d,μ)—обмежений метричний простір із метрикою d і регулярною борелевого мірою μ, що пов'язані умовою подвоєння. Тоді для будь-якої вимірної на X функції f існують додатна зростаюча функція η∈Ω(η(+0)=0 і η(t)t−a спадає при деякому a>0), вимірна на X невід'ємна функція g та множина E⊂X,μE=0, для яких |f(x)−f(y)|⩽[g(x)+g(y)]η(d(x,y)),x,y∈X∖E. Якщо f∈Lp(X),p>0, то можна вибрати g∈Lp(X). | uk_UA |
| dc.description.abstract | We prove the following statement, which is a quantitative form of the Luzin theorem on C-property: Let (X, d, μ) be a bounded metric space with metric d and regular Borel measure μ that are related to one another by the doubling condition. Then, for any function f measurable on X, there exist a positive increasing function η ∈ Ω (η(+0) = 0 and η(t)t −a decreases for a certain a > 0), a nonnegative function g measurable on X, and a set E ⊂ X, μE = 0 , for which |f(x)−f(y)|⩽[g(x)+g(y)]η(d(x,y)),x,y∈X/E If f ∈ L p (X), p >0, then it is possible to choose g belonging to L p (X). | uk_UA |
| dc.identifier.citation | Количественная форма C-свойства Лузина / В.Г. Кротов // Український математичний журнал. — 2010. — Т. 62, № 3. — С. 387–395. — Бібліогр.: 15 назв. — рос. | uk_UA |
| dc.identifier.issn | 1027-3190 | |
| dc.identifier.udc | 517.5 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/165102 | |
| dc.language.iso | ru | uk_UA |
| dc.publisher | Інститут математики НАН України | uk_UA |
| dc.relation.ispartof | Український математичний журнал | |
| dc.status | published earlier | uk_UA |
| dc.subject | Статті | uk_UA |
| dc.title | Количественная форма C-свойства Лузина | uk_UA |
| dc.title.alternative | Quantitative form of the Luzin C-property | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: