Modelling complex networks by random hierarchical graphs

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут фізики конденсованих систем НАН України

Анотація

Numerous complex networks contain special patterns, called network motifs. These are specific subgraphs, which occur oftener than in randomized networks of Erd˝os-R´enyi type. We choose one of them, the triangle, and build a family of random hierarchical graphs, being Sierpi ´nski gasket-based graphs with random “decorations”. We calculate the important characteristics of these graphs – average degree, average shortest path length, small-world graph family characteristics. They depend on probability of decorations. We analyze the Ising model on our graphs and describe its critical properties using a renormalization-group technique.
Багато комплексних мереж мiстять особливi шаблони, так званi мережевi мотиви. Вони є спецiальними пiдграфами, що з’являються частiше нiж у випадкових мережах типу Ердоша-Ренi. Ми обрали один з таких шаблонiв – трикутник, i побудували сiмейство випадкових iєрархiчних графiв, визначених за гаскетом Серпiнського з випадковими “декорацiями”. Розрахованi важливi характеристики таких графiв – середнiй ступiнь, середня довжина шляху, характеристики сiмейства графiв “тiсного свiту”. Вони залежать вiд iмовiрностi декорацiй. Проаналiзовано модель Iзiнга на наших графах, описано її критичнi властивостi з використанням методу ренорм-групи.

Опис

Теми

Цитування

Modelling complex networks by random hierarchical graphs / M. Wróbel // Condensed Matter Physics. — 2008. — Т. 11, № 2(54). — С. 341-346. — Бібліогр.: 9 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced