Geometry and Conservation Laws for a Class of Second-Order Parabolic Equations II: Conservation Laws
| dc.contributor.author | McMillan, Benjamin B. | |
| dc.date.accessioned | 2025-12-29T11:06:08Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | I consider the existence and structure of conservation laws for the general class of evolutionary scalar second-order differential equations with parabolic symbol. First, I calculate the linearized characteristic cohomology for such equations. This provides an auxiliary differential equation satisfied by the conservation laws of a given parabolic equation. This is used to show that conservation laws for any evolutionary parabolic equation depend on at most second derivatives of solutions. As a corollary, it is shown that the only evolutionary parabolic equations with at least one non-trivial conservation law are of Monge-Ampère type. | |
| dc.description.sponsorship | This material is based upon work supported by the National Science Foundation under Grant No. DGE-1106400 and 74341.2010, as well as the Australian Research Council, Discovery Program DP190102360. | |
| dc.identifier.citation | Geometry and Conservation Laws for a Class of Second-Order Parabolic Equations II: Conservation Laws. Benjamin B. McMillan. SIGMA 17 (2021), 047, 24 pages | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2021.047 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2020 Mathematics Subject Classification: 35L65; 58A15; 35K10; 35K55; 35K96 | |
| dc.identifier.other | arXiv:1810.02346 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/211302 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | Geometry and Conservation Laws for a Class of Second-Order Parabolic Equations II: Conservation Laws | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 047-McMillan.pdf
- Розмір:
- 418.2 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: