Riemannian Geometry of a Discretized Circle and Torus

dc.contributor.authorBochniak, Arkadiusz
dc.contributor.authorSitarz, Andrzej
dc.contributor.authorZalecki, Paweł
dc.date.accessioned2025-12-23T13:11:03Z
dc.date.issued2020
dc.description.abstractWe extend the results of Riemannian geometry over finite groups and provide a full classification of all linear connections for the minimal noncommutative differential calculus over a finite cyclic group. We solve the torsion-free and metric compatibility condition in general and show that there are several classes of solutions, out of which only special ones are compatible with a metric that gives a Hilbert 𝐶*-module structure on the space of the one-forms. We compute curvature and scalar curvature for these metrics and find their continuous limits.
dc.description.sponsorshipWe would like to thank the referees for their valuable comments on the content of our manuscript and their suggestions for improving the document. PZ was supported by the Faculty of Physics, Astronomy and Applied Computer Science of the Jagiellonian University under the DSC scheme: U1U/P05/NW/03.27.
dc.identifier.citationRiemannian Geometry of a Discretized Circle and Torus. Arkadiusz Bochniak, Andrzej Sitarz and Paweł Zalecki. SIGMA 16 (2020), 143, 28 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.143
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 46L87; 83C65
dc.identifier.otherarXiv:2007.01241
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211076
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleRiemannian Geometry of a Discretized Circle and Torus
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
143-Bochniak.pdf
Розмір:
562.89 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: