Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions
dc.contributor.author | Umezu, K. | |
dc.date.accessioned | 2020-06-09T12:33:44Z | |
dc.date.available | 2020-06-09T12:33:44Z | |
dc.date.issued | 2000 | |
dc.description.abstract | In this note we study a semilinear elliptic boundary value problem of one parameter dependence which arises in population genetics, having nonlinear boundary conditions. For some cases of sign indefinite weights, we investigate the existence and asymptotic behavior of the minimal positive solution. The analysis uses the local bifurcation theory from simple eigenvalues, super-sub-solution method and variational technique. | uk_UA |
dc.identifier.citation | Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions / K. Umezu // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 193-198. — Бібліогр.: 19 назв. — англ. | uk_UA |
dc.identifier.issn | 0236-0497 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/169257 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
dc.relation.ispartof | Нелинейные граничные задачи | |
dc.status | published earlier | uk_UA |
dc.title | Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: