Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles

dc.contributor.authorLevin, A.M.
dc.contributor.authorOlshanetsky, M.A.
dc.contributor.authorSmirnov, A.V.
dc.contributor.authorZotov, A.V.
dc.date.accessioned2019-02-18T17:37:32Z
dc.date.available2019-02-18T17:37:32Z
dc.date.issued2012
dc.description.abstractWe describe new families of the Knizhnik-Zamolodchikov-Bernard (KZB) equations related to the WZW-theory corresponding to the adjoint G-bundles of different topological types over complex curves Σg,n of genus g with n marked points. The bundles are defined by their characteristic classes - elements of H²(Σg,n,Z(G)), where Z(G) is a center of the simple complex Lie group G. The KZB equations are the horizontality condition for the projectively flat connection (the KZB connection) defined on the bundle of conformal blocks over the moduli space of curves. The space of conformal blocks has been known to be decomposed into a few sectors corresponding to the characteristic classes of the underlying bundles. The KZB connection preserves these sectors. In this paper we construct the connection explicitly for elliptic curves with marked points and prove its flatness.uk_UA
dc.description.sponsorshipThe authors are grateful to A. Beilinson, L. Feh´er, B. Feigin, A. Gorsky, S. Khoroshkin, A. Losev, A. Mironov, V. Poberezhny, A. Rosly and A. Stoyanovsky for useful discussions and remarks. The work was supported by grants RFBR-09-02-00393, RFBR-09-01-92437-KEa and by the Federal Agency for Science and Innovations of Russian Federation under contract 14.740.11.0347. The work of A.Z. and A.S. was also supported by the Russian President fund MK-1646.2011.1, RFBR-09-01-93106-NCNILa, RFBR-12-01-00482 and RFBR-12-01-33071 mol a ved. The work of A.L. was partially supported by AG Laboratory GU-HSE, RF government grant, ag. 1111.G34.31.0023.uk_UA
dc.identifier.citationHecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles / A.M. Levin, M.A. Olshanetsky, A.V. Smirnov, A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 74 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 14H70; 32G34; 14H60
dc.identifier.otherDOI: http://dx.doi.org/10.3842/SIGMA.2012.095
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148657
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleHecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundlesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
095-Levin.pdf
Розмір:
648.88 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: