Projective Metrizability and Formal Integrability

dc.contributor.authorBucataru, I.
dc.contributor.authorMuzsnay, Z.
dc.date.accessioned2019-02-16T20:53:19Z
dc.date.available2019-02-16T20:53:19Z
dc.date.issued2011
dc.description.abstractThe projective metrizability problem can be formulated as follows: under what conditions the geodesics of a given spray coincide with the geodesics of some Finsler space, as oriented curves. In Theorem 3.8 we reformulate the projective metrizability problem for a spray in terms of a first-order partial differential operator P₁ and a set of algebraic conditions on semi-basic 1-forms. We discuss the formal integrability of P₁ using two sufficient conditions provided by Cartan-Kähler theorem. We prove in Theorem 4.2 that the symbol of P₁ is involutive and hence one of the two conditions is always satisfied. While discussing the second condition, in Theorem 4.3 we prove that there is only one obstruction to the formal integrability of P₁, and this obstruction is due to the curvature tensor of the induced nonlinear connection. When the curvature obstruction is satisfied, the projective metrizability problem reduces to the discussion of the algebraic conditions, which as we show are always satisfied in the analytic case. Based on these results, we recover all classes of sprays that are known to be projectively metrizable: flat sprays, isotropic sprays, and arbitrary sprays on 1- and 2-dimensional manifolds. We provide examples of sprays that are projectively metrizable without being Finsler metrizable.uk_UA
dc.description.sponsorshipThe work of IB was supported by the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project number PN-II-RU-TE-2011-3-0017. The work of Z.M. has been supported by the Hungarian Scientific Research Fund (OTKA) Grant K67617.uk_UA
dc.identifier.citationProjective Metrizability and Formal Integrability / I. Bucataru, Z. Muzsnay // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 49N45; 58E30; 53C60; 58B20; 53C22
dc.identifier.otherDOI: http://dx.doi.org/10.3842/SIGMA.2011.114
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148091
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleProjective Metrizability and Formal Integrabilityuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
114-Bucataru.pdf
Розмір:
470.28 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: