The 2-Transitive Transplantable Isospectral Drums
dc.contributor.author | Schillewaert, J. | |
dc.contributor.author | Thas, K. | |
dc.date.accessioned | 2019-02-14T17:51:03Z | |
dc.date.available | 2019-02-14T17:51:03Z | |
dc.date.issued | 2011 | |
dc.description.abstract | For Riemannian manifolds there are several examples which are isospectral but not isometric, see e.g. J. Milnor [Proc. Nat. Acad. Sci. USA 51 (1964), 542]; in the present paper, we investigate pairs of domains in R² which are isospectral but not congruent. All known such counter examples to M. Kac's famous question can be constructed by a certain tiling method (''transplantability'') using special linear operator groups which act 2-transitively on certain associated modules. In this paper we prove that if any operator group acts 2-transitively on the associated module, no new counter examples can occur. In fact, the main result is a corollary of a result on Schreier coset graphs of 2-transitive groups. | uk_UA |
dc.description.sponsorship | The second author is partially supported by the Fund for Scientific Research – Flanders (Belgium). | uk_UA |
dc.identifier.citation | The 2-Transitive Transplantable Isospectral Drums / J. Schillewaert, K. Thas // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 19 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 20D06; 35J10; 35P05; 37J10; 58J53 | |
dc.identifier.other | DOI: http://dx.doi.org/10.3842/SIGMA.2011.080 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/147407 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | The 2-Transitive Transplantable Isospectral Drums | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 080-Schillewaert.pdf
- Розмір:
- 329.95 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: