Magnonic crystals — prospective structures for shaping spin waves in nanoscale

dc.contributor.authorRychły, J.
dc.contributor.authorGruszecki, P.
dc.contributor.authorMruczkiewicz, M.
dc.contributor.authorKłos, J.W.
dc.contributor.authorMamica, S.
dc.contributor.authorKrawczyk, M.
dc.date.accessioned2018-01-05T17:39:42Z
dc.date.available2018-01-05T17:39:42Z
dc.date.issued2015
dc.description.abstractWe have investigated theoretically band structure of spin waves in magnonic crystals with periodicity in one(1D), two- (2D) and three-dimensions (3D). We have solved Landau–Lifshitz equation with the use of plane wave method, finite element method in frequency domain and micromagnetic simulations in time domain to find the dynamics of spin waves and spectrum of their eigenmodes. The spin wave spectra were calculated in linear approximation. In this paper we show usefulness of these methods in calculations of various types of spin waves. We demonstrate the surface character of the Damon–Eshbach spin wave in 1D magnonic crystals and change of its surface localization with the band number and wavenumber in the first Brillouin zone. The surface property of the spin wave excitation is further exploited by covering plate of the magnonic crystal with conductor. The band structure in 2D magnonic crystals is complex due to additional spatial inhomogeneity introduced by the demagnetizing field. This modifies spin wave dispersion, makes the band structure of magnonic crystals strongly dependent on shape of the inclusions and type of the lattice. The inhomogeneity of the internal magnetic field becomes unimportant for magnonic crystals with small lattice constant, where exchange interactions dominate. For 3D magnonic crystals, characterized by small lattice constant, wide magnonic band gap is found. We show that the spatial distribution of different materials in magnonic crystals can be explored for tailored effective damping of spin wavesuk_UA
dc.description.sponsorshipThe research leading to these results has received funding from Polish National Science Centre project DEC-2- 12/07/E/ST3/00538 and from the EUs Horizon2020 research and innovation programme under the Marie Sklodowska-Curie GA No644348. The numerical calculation were performed at Poznan Supercomputing and Networking Center (grant No. 209).uk_UA
dc.identifier.citationMagnonic crystals — prospective structures for shaping spin waves in nanoscale / J. Rychły, P. Gruszecki, M. Mruczkiewicz, J.W. Kłos, S. Mamica, M. Krawczyk // Физика низких температур. — 2015. — Т. 41, № 10. — С. 959–975. — Бібліогр.: 65 назв. — англ.uk_UA
dc.identifier.issn0132-6414
dc.identifier.otherPACS: 75.30.Ds, 75.70.Cn, 75.75.–c
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/128078
dc.language.isoenuk_UA
dc.publisherФізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН Україниuk_UA
dc.relation.ispartofФизика низких температур
dc.statuspublished earlieruk_UA
dc.subjectСпециальный выпуск К 80-летию уравнения Ландау–Лифшицаuk_UA
dc.titleMagnonic crystals — prospective structures for shaping spin waves in nanoscaleuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
01-Rychły.pdf
Розмір:
1.76 MB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: