Werner's Measure on Self-Avoiding Loops and Welding

dc.contributor.authorChavez, A.
dc.contributor.authorPickrell, D.
dc.date.accessioned2019-02-10T10:12:47Z
dc.date.available2019-02-10T10:12:47Z
dc.date.issued2014
dc.description.abstractWerner's conformally invariant family of measures on self-avoiding loops on Riemann surfaces is determined by a single measure μ0 on self-avoiding loops in C∖{0} which surround 0. Our first major objective is to show that the measure μ0 is infinitesimally invariant with respect to conformal vector fields (essentially the Virasoro algebra of conformal field theory). This makes essential use of classical variational formulas of Duren and Schiffer, which we recast in representation theoretic terms for efficient computation. We secondly show how these formulas can be used to calculate (in principle, and sometimes explicitly) quantities (such as moments for coefficients of univalent functions) associated to the conformal welding for a self-avoiding loop. This gives an alternate proof of the uniqueness of Werner's measure. We also attempt to use these variational formulas to derive a differential equation for the (Laplace transform of) the ''diagonal distribution'' for the conformal welding associated to a loop; this generalizes in a suggestive way to a deformation of Werner's measure conjectured to exist by Kontsevich and Suhov (a basic inspiration for this paper).uk_UA
dc.description.sponsorshipWe thank Tom Kennedy for useful conversations, and the referees for many useful suggestions regarding exposition and inclusion of references.uk_UA
dc.identifier.citationWerner's Measure on Self-Avoiding Loops and Welding / A. Chavez, D. Pickrell // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 17 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 60D05; 60B15; 17B68; 30C99
dc.identifier.otherDOI:10.3842/SIGMA.2014.081
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146622
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleWerner's Measure on Self-Avoiding Loops and Weldinguk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
36-Chavez.pdf
Розмір:
537.23 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: