On Frobenius' Theta Formula

dc.contributor.authorFiorentino, Alessio
dc.contributor.authorSalvati Manni, Riccardo
dc.date.accessioned2025-12-15T15:18:28Z
dc.date.issued2020
dc.description.abstractMumford's well-known characterization of the hyperelliptic locus of the moduli space of ppavs in terms of vanishing and non-vanishing theta constants is based on Neumann's dynamical system. Poor's approach to the characterization uses the cross ratio. A key tool in both methods is Frobenius' theta formula, which follows from Riemann's theta formula. In a 2004 paper, Grushevsky gives a different characterization in terms of cubic equations in second-order theta functions. In this note, we first show the connection between the methods by proving that Grushevsky's cubic equations are strictly related to Frobenius' theta formula, and we then give a new proof of Mumford's characterization via Gunning's multisecant formula.
dc.description.sponsorshipThe authors would like to thank Bert van Geemen for drawing their attention to the result in [5]. They are also grateful to Sam Grushevsky for many helpful discussions and explanations. The authors are greatly indebted to an anonymous referee for the careful reading and suggestions.
dc.identifier.citationOn Frobenius' Theta Formula. Alessio Fiorentino and Riccardo Salvati Manni. SIGMA 16 (2020), 057, 14 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.057
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 14H42; 14H45; 14K25; 14K12; 14H40
dc.identifier.otherarXiv:2004.05099
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210693
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleOn Frobenius' Theta Formula
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
057-Fiorentino.pdf
Розмір:
350.46 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: