On Frobenius' Theta Formula
| dc.contributor.author | Fiorentino, Alessio | |
| dc.contributor.author | Salvati Manni, Riccardo | |
| dc.date.accessioned | 2025-12-15T15:18:28Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | Mumford's well-known characterization of the hyperelliptic locus of the moduli space of ppavs in terms of vanishing and non-vanishing theta constants is based on Neumann's dynamical system. Poor's approach to the characterization uses the cross ratio. A key tool in both methods is Frobenius' theta formula, which follows from Riemann's theta formula. In a 2004 paper, Grushevsky gives a different characterization in terms of cubic equations in second-order theta functions. In this note, we first show the connection between the methods by proving that Grushevsky's cubic equations are strictly related to Frobenius' theta formula, and we then give a new proof of Mumford's characterization via Gunning's multisecant formula. | |
| dc.description.sponsorship | The authors would like to thank Bert van Geemen for drawing their attention to the result in [5]. They are also grateful to Sam Grushevsky for many helpful discussions and explanations. The authors are greatly indebted to an anonymous referee for the careful reading and suggestions. | |
| dc.identifier.citation | On Frobenius' Theta Formula. Alessio Fiorentino and Riccardo Salvati Manni. SIGMA 16 (2020), 057, 14 pages | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2020.057 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2020 Mathematics Subject Classification: 14H42; 14H45; 14K25; 14K12; 14H40 | |
| dc.identifier.other | arXiv:2004.05099 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/210693 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | On Frobenius' Theta Formula | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 057-Fiorentino.pdf
- Розмір:
- 350.46 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: