Isomorphism between the R-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types B and D

dc.contributor.authorJing, Naihuan
dc.contributor.authorLiu, Ming
dc.contributor.authorMolev, Alexander
dc.date.accessioned2025-12-15T15:25:35Z
dc.date.issued2020
dc.description.abstractFollowing the approach of Ding and Frenkel [Comm. Math. Phys. 156 (1993), 277-300] for type A, we showed in our previous work [J. Math. Phys. 61 (2020), 031701, 41 pages] that the Gauss decomposition of the generator matrix in the R-matrix presentation of the quantum affine algebra yields the Drinfeld generators in all classical types. Complete details for type C were given therein, while the present paper deals with types B and D. The arguments for all classical types are quite similar, so we mostly concentrate on the necessary additional details specific to the underlying orthogonal Lie algebras.
dc.description.sponsorshipJing acknowledges the National Natural Science Foundation of China grant 11531004 and Simons Foundation grant 523868. Liu acknowledges the National Natural Science Foundation of China grant 11531004, 11701182, and the Guangdong Natural Science Foundation grant 2019A1515012039. Liu and Molev acknowledge the support of the Australian Research Council, grant DP180101825.
dc.identifier.citationIsomorphism between the R-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types B and D. Naihuan Jing, Ming Liu and Alexander Molev. SIGMA 16 (2020), 043, 49 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.043
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 17B37; 17B69
dc.identifier.otherarXiv:1911.03496
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210707
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleIsomorphism between the R-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types B and D
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
043-Jing.pdf
Розмір:
583.3 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: