Наибольшая точная нижняя граница вероятности отказа системы в специальном интервале времени при неполной информации о функции распределения времени до отказа системы

dc.contributor.authorСтойкова, Л.С.
dc.date.accessioned2019-01-02T15:58:36Z
dc.date.available2019-01-02T15:58:36Z
dc.date.issued2017
dc.description.abstractРешается задача нахождения точных нижних границ вероятности F(v)−F(u), 0<u<v<∞, где u=m−σμ3√3, v=m+σμ3√3, σμ — заданная дисперсия в множестве функций распределения F(x) неотрицательных случайных величин с унимодальной дифференцируемой плотностью с модой, равной m, и двумя первыми фиксированными моментами μ₁, μ₂. Рассматривается случай, когда мода совпадает с первым моментом: m=μ₁. Найдена наибольшая вероятность из всех точных нижних границ вероятностей для решаемой задачи, и она является близкой к единице, т.е. равной 0,98430.uk_UA
dc.description.abstractРозв'язується задача знаходження точних нижніх границь імовірності F(v)−F(u), 0<u<v<∞, де u=m−σμ 3√3, v=m+σμ 3√3, σμ — фіксована дисперсія в множині функцій розподілу F(x) невід'ємних випадкових величин з унімодальною диференційованою щільністю з модою, рівною m, і двома першими фіксованими моментами μ₁, μ₂. Розглянуто випадок, коли мода збігається з першим моментом: m=μ₁. Знайдено найбільшу ймовірність із всіх точних нижніх границь ймовірностей для даної задачі, і вона є близькою до 1, а саме рівна 0,98430.uk_UA
dc.description.abstractThe author solves the problem of finding exact lower bounds for the probability F(v)−F(u), 0<u<v<∞, where u=m−σμ3√3, v=m+σμ3√3, and σμ is a fixed dispersion in the set of distribution functions F(x) of non-negative random variables with unimodal differentiable density with mode m and two first fixed moments μ₁, μ₂. The case is considered where the mode coincides with the first moment: m=μ₁. The greatest lower bound of all possible exact lower bounds for this problem is obtained and it is nearly one, namely, is equal to 0.98430.uk_UA
dc.identifier.citationНаибольшая точная нижняя граница вероятности отказа системы в специальном интервале времени при неполной информации о функции распределения времени до отказа системы / Л.С. Стойкова // Кибернетика и системный анализ. — 2017. — Т. 53, № 2. — С. 65–73. — Бібліогр.: 7 назв. — рос.uk_UA
dc.identifier.issn0023-1274
dc.identifier.udc519.2
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/144712
dc.language.isoruuk_UA
dc.publisherІнститут кібернетики ім. В.М. Глушкова НАН Україниuk_UA
dc.relation.ispartofКибернетика и системный анализ
dc.statuspublished earlieruk_UA
dc.subjectСистемний аналізuk_UA
dc.titleНаибольшая точная нижняя граница вероятности отказа системы в специальном интервале времени при неполной информации о функции распределения времени до отказа системыuk_UA
dc.title.alternativeНайбільша точна нижня границя ймовірності відмови системи в спеціальному інтервалі часу при неповній інформації щодо функції розподілу часу до відмови системиuk_UA
dc.title.alternativeGreatest lower bound of system failure probability in a special time interval under incomplete information about the distribution function of the time to failure of systemuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
06-Stoikova.pdf
Розмір:
121.58 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: