Wavelet Transform-Based Classification of ElectroMyogram Signals Using an ANOVA Technique

dc.contributor.authorKaran, V.
dc.date.accessioned2019-02-17T17:45:13Z
dc.date.available2019-02-17T17:45:13Z
dc.date.issued2015
dc.description.abstractWavelet analysis of surface electromyogram (sEMG) signals has been investigated. Methods to remove noise before processing and further analysis are rather significant for these signals. The sEMG signals were estimated with the following steps, first, the obtained signal was decomposed using wavelet transform; then, decomposed coefficients were analyzed by threshold methods, and, finally, reconstruction was performed. Comparison of the Daubechies wavelet family for effective removing noise from the recorded sEMGs was executed preciously. As was found, wavelet transform db4 performs denoising best among the aforesaid wavelet family. Results inferred that Daubechies wavelet families (db4) were more suitable for the analysis of sEMG signals related to different upper limb motions, and a classification accuracy of 88.90% was achieved. Then, a statistical technique (one-way repeated factorial analysis) for the experimental coefficient was done to investigate the class separability among different motions.uk_UA
dc.description.abstractДосліджували можливість застосування вейвлет-аналізу щодо сигналів поверхневої електроміограми (пЕМГ). Використання видалення шумів із записів пЕМГ перед обробкою таких сигналів для подальшого аналізу є дуже істотним. Сигнали пЕМГ оцінювалися в наступній послідовності: спочатку отриманий сигнал підлягав декомпозиції з використанням вейвлет-перетворення, потім декомпозовані коефіцієнти аналізувались із застосуванням порогових методик, і, нарешті, виконувалася реконструкція. Попередньо порівнювали ефективність видалення шумів у межах вейвлет-сімейства Daubechies. Було встановлено, що вейвлет-перетворення db4 із цього сімейства виконує знешумлення найкращим чином. Отримані результати вказують на те, що вейвлет-сімейства Daubechies є більш придатними для аналізу пЕМГ сигналів, отриманих в умовах реєстрації різних моторних реакцій м’язів верхніх кінцівок; досягалася точність класифікації 88.9 %. Потім статистична методика (однобічний повторний факторіальний аналіз) застосовувалася щодо експериментальних коефіцієнтів для встановлення якості розділення даних при різних рухах.uk_UA
dc.description.sponsorshipThe author is grateful to Dr. Amod Kumar and Dr. Ravinder Agarwal, PhD supervisors for helping in writing this paper.uk_UA
dc.identifier.citationWavelet Transform-Based Classification of ElectroMyogram Signals Using an ANOVA Technique / V. Karan // Нейрофизиология. — 2015. — Т. 47, № 4. — С. 356-363. — Бібліогр.: 18 назв. — англ.uk_UA
dc.identifier.issn0028-2561
dc.identifier.udc612.741.1:519.218.82
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148211
dc.language.isoenuk_UA
dc.publisherІнститут фізіології ім. О.О. Богомольця НАН Україниuk_UA
dc.relation.ispartofНейрофизиология
dc.statuspublished earlieruk_UA
dc.titleWavelet Transform-Based Classification of ElectroMyogram Signals Using an ANOVA Techniqueuk_UA
dc.title.alternativeКласифікація електроміографічних сигналів з використанням аналізу ANOVA, базована на вейвлет-перетворенняхuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
07-Karan.pdf
Розмір:
285.68 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: