Random covers of finite homogeneous lattices
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
We develop and extend some results for the scheme of independent random elements
distributed on a finite lattice. In particular, we introduce the concept of the cover of
a homogeneous lattice Ln of rank n and derive the exact equations and estimations
for the number of covers with a given number of blocks and for the total covers
number of the lattice Ln. A theorem about the asymptotic normality of the blocks
number in a random equiprobable cover of the lattice Ln is proved. The concept of
the cover index of the lattice Ln, that extend the notion of the cover index of a finite
set by its independent random subsets, is introduced. Applying the lattice moments
method, the limit distribution as n→∞ for the cover index of a subspace lattice of
the n-dimensional vector space over a finite field is determined.
Опис
Теми
Цитування
Random covers of finite homogeneous lattices / A.N. Alekseychuk // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 12–19. — Бібліогр.: 10 назв.— англ.