Random covers of finite homogeneous lattices

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We develop and extend some results for the scheme of independent random elements distributed on a finite lattice. In particular, we introduce the concept of the cover of a homogeneous lattice Ln of rank n and derive the exact equations and estimations for the number of covers with a given number of blocks and for the total covers number of the lattice Ln. A theorem about the asymptotic normality of the blocks number in a random equiprobable cover of the lattice Ln is proved. The concept of the cover index of the lattice Ln, that extend the notion of the cover index of a finite set by its independent random subsets, is introduced. Applying the lattice moments method, the limit distribution as n→∞ for the cover index of a subspace lattice of the n-dimensional vector space over a finite field is determined.

Опис

Теми

Цитування

Random covers of finite homogeneous lattices / A.N. Alekseychuk // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 12–19. — Бібліогр.: 10 назв.— англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced