Integrability by quadratures for systems of involutive vector fields
dc.contributor.author | Basarab-Horwath, P. | |
dc.date.accessioned | 2019-06-15T15:58:37Z | |
dc.date.available | 2019-06-15T15:58:37Z | |
dc.date.issued | 1991 | |
dc.description.abstract | Starting from results and ideas of S. Lie anb E. Cartan, we give a systematic and geometric treatment of integrability dy quadratures of involutive systems of vector filds, showing how-a-generalization of the usual multiplier can-de constructed with the aid of closed differential forms and enough symmetry vector fields. This leads us to explicit formulas for the indepen-. dent integrals. These results allow us to identify symmetries with integral invariants in the sense of Poincare and Cartan. A further (new) result gives the equivalence of integrability by quadratures and the existence of solvable structures, these latter being generalizations. of solvable algebras. | uk_UA |
dc.identifier.citation | Integrability by quadratures for systems of involutive vector fields/ P. Basarab-Horwath // Український математичний журнал. — 1991. — Т. 43, № 10. — С. 1330–1337. — Бібліогр.: 9 назв. — англ. | uk_UA |
dc.identifier.issn | 1027-3190 | |
dc.identifier.udc | 517.9 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/154478 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Український математичний журнал | |
dc.status | published earlier | uk_UA |
dc.subject | Статті | uk_UA |
dc.title | Integrability by quadratures for systems of involutive vector fields | uk_UA |
dc.title.alternative | Интегрирование в квадратурах инволютивных систем векторных полей | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 06-Bаsаrаb-Ноrwаth.pdf
- Розмір:
- 1.24 MB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: