Density of Eigenvalues of Random Normal Matrices with an Arbitrary Potential, and of Generalized Normal Matrices

dc.contributor.authorEtingof, P.
dc.contributor.authorMa, X.
dc.date.accessioned2019-02-16T08:40:21Z
dc.date.available2019-02-16T08:40:21Z
dc.date.issued2007
dc.description.abstractFollowing the works by Wiegmann-Zabrodin, Elbau-Felder, Hedenmalm-Makarov, and others, we consider the normal matrix model with an arbitrary potential function, and explain how the problem of finding the support domain for the asymptotic eigenvalue density of such matrices (when the size of the matrices goes to infinity) is related to the problem of Hele-Shaw flows on curved surfaces, considered by Entov and the first author in 1990-s. In the case when the potential function is the sum of a rotationally invariant function and the real part of a polynomial of the complex coordinate, we use this relation and the conformal mapping method developed by Entov and the first author to find the shape of the support domain explicitly (up to finitely many undetermined parameters, which are to be found from a finite system of equations). In the case when the rotationally invariant function is βz2, this is done by Wiegmann-Zabrodin and Elbau-Felder. We apply our results to the generalized normal matrix model, which deals with random block matrices that give rise to *-representations of the deformed preprojective algebra of the affine quiver of type Âm-1. We show that this model is equivalent to the usual normal matrix model in the large N limit. Thus the conformal mapping method can be applied to find explicitly the support domain for the generalized normal matrix model.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Vadim Kuznetsov Memorial Issue ‘Integrable Systems and Related Topics’. P.E. is grateful to G. Felder and P. Wiegmann for useful discussions. The work of P.E. was partially supported by the NSF grant DMS-0504847.uk_UA
dc.identifier.citationDensity of Eigenvalues of Random Normal Matrices with an Arbitrary Potential, and of Generalized Normal Matrices / P. Etingof, X. Ma // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 12 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 15A52
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147815
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleDensity of Eigenvalues of Random Normal Matrices with an Arbitrary Potential, and of Generalized Normal Matricesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
48-Etingof.pdf
Розмір:
250.07 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: