Further Results on a Function Relevant for Conformal Blocks

dc.contributor.authorComeau, Vincent
dc.contributor.authorFortin, Jean-François
dc.contributor.authorSkiba, Witold
dc.date.accessioned2025-12-23T13:14:05Z
dc.date.issued2020
dc.description.abstractWe present further mathematical results on a function appearing in the conformal blocks of four-point correlation functions with arbitrary primary operators. The 𝐻-function was introduced in a previous article, and it has several interesting properties. We prove explicitly the recurrence relation as well as the 𝐷₆-invariance presented previously. We also demonstrate the proper action of the differential operator used to construct the 𝐻-function.
dc.description.sponsorshipTwo of the authors(JFF and WS) would like to thank the CERN Theory Group, where this work was conceived, for its hospitality. The work of VC and JFF is supported by NSERC and FRQNT. We would like to acknowledge anonymous referees whose comments helped us improve the content and clarity of this article.
dc.identifier.citationFurther Results on a Function Relevant for Conformal Blocks. Vincent Comeau, Jean-François Fortin and Witold Skiba. SIGMA 16 (2020), 124, 15 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.124
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 33C70; 33C65; 33C90; 81T40
dc.identifier.otherarXiv:1902.08598
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211095
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleFurther Results on a Function Relevant for Conformal Blocks
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
124-Comeau.pdf
Розмір:
357.11 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: