Twists on the Torus Equivariant under the 2-Dimensional Crystallographic Point Groups

dc.contributor.authorGomi, K.
dc.date.accessioned2019-02-18T16:44:13Z
dc.date.available2019-02-18T16:44:13Z
dc.date.issued2017
dc.description.abstractA twist is a datum playing a role of a local system for topological K-theory. In equivariant setting, twists are classified into four types according to how they are realized geometrically. This paper lists the possible types of twists for the torus with the actions of the point groups of all the 2-dimensional space groups (crystallographic groups), or equivalently, the torus with the actions of all the possible finite subgroups in its mapping class group. This is carried out by computing Borel's equivariant cohomology and the Leray-Serre spectral sequence. As a byproduct, the equivariant cohomology up to degree three is determined in all cases. The equivariant cohomology with certain local coefficients is also considered in relation to the twists of the Freed-Moore K-theory.uk_UA
dc.description.sponsorshipI would like to thank K. Shiozaki and M. Sato for valuable discussions. I would also thank G.C. Thiang, D. Tamaki, anonymous referees and an editor for helpful criticisms and comments. This work is supported by JSPS KAKENHI Grant Number JP15K04871.uk_UA
dc.identifier.citationTwists on the Torus Equivariant under the 2-Dimensional Crystallographic Point Groups / K. Gomi // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 53C08; 55N91; 20H15; 81T45
dc.identifier.otherDOI:10.3842/SIGMA.2017.014
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148623
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleTwists on the Torus Equivariant under the 2-Dimensional Crystallographic Point Groupsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
014-Gomi.pdf
Розмір:
582.09 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: