A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian
dc.contributor.author | Rösler, M. | |
dc.contributor.author | Voit, M. | |
dc.date.accessioned | 2019-02-12T18:12:01Z | |
dc.date.available | 2019-02-12T18:12:01Z | |
dc.date.issued | 2015 | |
dc.description.abstract | We consider compact Grassmann manifolds G/K over the real, complex or quaternionic numbers whose spherical functions are Heckman-Opdam polynomials of type BC. From an explicit integral representation of these polynomials we deduce a sharp Mehler-Heine formula, that is an approximation of the Heckman-Opdam polynomials in terms of Bessel functions, with a precise estimate on the error term. This result is used to derive a central limit theorem for random walks on the semi-lattice parametrizing the dual of G/K, which are constructed by successive decompositions of tensor powers of spherical representations of G. The limit is the distribution of a Laguerre ensemble in random matrix theory. Most results of this paper are established for a larger continuous set of multiplicity parameters beyond the group cases. | uk_UA |
dc.identifier.citation | A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian / M. Rösler, M. Voit // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 32 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 33C52; 43A90; 60F05; 60B15; 43A62; 33C80; 33C67 | |
dc.identifier.other | DOI:10.3842/SIGMA.2015.013 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/146999 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 013-Rösler.pdf
- Розмір:
- 427.12 KB
- Формат:
- Adobe Portable Document Format
- Опис:
- Стаття
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: