Good Measures on Locally Compact Cantor Sets
dc.contributor.author | Karpel, O.M. | |
dc.date.accessioned | 2016-10-03T16:12:53Z | |
dc.date.available | 2016-10-03T16:12:53Z | |
dc.date.issued | 2012 | |
dc.description.abstract | We study the set M(X) of full non-atomic Borel measures μ on a non-compact locally compact Cantor set X. The set Mμ = {x is in X : for any compact open set U (x is in U) we have μ(U) = ∞} is called defective. μ is non-defective if μ(Mμ) = 0. The set M⁰(X) is subset of M(X) consists of probability and infinite non-defective measures. We classify the measures from M⁰(X) with respect to a homeomorphism. The notions of goodness and the compact open values set S(μ) are defined. A criterion when two good measures are homeomorphic is given.For a group-like set D and a locally compact zero-dimensional metric space A we find a good non-defective measure μ on X such that S(μ) = D and Mμ is homeomorphic to A. We give a criterion when a good measure on X can be extended to a good measure on the compactification of X. | uk_UA |
dc.description.abstract | Изучается множество M(X) полных неатомарных борелевских мер μ на некомпактном локально-компактном канторовском множестве X. Множество Mμ = {x є X : для любого компактно-открытого множества U (x є U) имеем μ(U) = ∞} называется дефектным. m недефектна, если μ(Mμ) = 0. Класс M⁰(X), являющийся подмножеством M(X), состоит из вероятностных и бесконечных недефектных мер. Меры из M⁰(X) классифицируются с точностью до гомеоморфизма. Введены понятия хорошей меры и множества S(μ) значений меры на компактно-открытых подмножествах. Представлен критерий гомеоморфности для двух хороших мер. Для группоподобного множества D и локально-компактного нульмерного метрического пространства A найдена хорошая мера m на X, такая что S(μ) = D и Mμ гомеоморфно A. Дан критерий, когда хорошая мера на X может быть продолжена до хорошей меры на компактификации X. | uk_UA |
dc.description.sponsorship | I am grateful to Prof. S. Bezuglyi for giving me the idea of this work and for many helpful discussions of this paper. | uk_UA |
dc.identifier.citation | Good Measures on Locally Compact Cantor Sets/ O.M. Karpel // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 3. — С. 260-279. — Бібліогр.: 16 назв. — англ. | uk_UA |
dc.identifier.issn | 1812-9471 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/106723 | |
dc.language.iso | en | uk_UA |
dc.publisher | Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України | uk_UA |
dc.relation.ispartof | Журнал математической физики, анализа, геометрии | |
dc.status | published earlier | uk_UA |
dc.title | Good Measures on Locally Compact Cantor Sets | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: