Triality for Homogeneous Polynomials
| dc.contributor.author | Schaposnik, Laura P. | |
| dc.contributor.author | Schulz, Sebastian | |
| dc.date.accessioned | 2025-12-30T15:51:29Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | Through the triality of SO(8, ℂ), we study three interrelated homogeneous bases of the ring of invariant polynomials of Lie algebras, which give the bases of three Hitchin fibrations, and identify the explicit automorphisms that relate them. | |
| dc.description.sponsorship | The authors are thankful to S. Rayan for his thorough comments on a draft of the manuscript. The work of S.S. is partially supported by NSF grants DMS 1107452, 1107263, 1107367 “RNMS: GEometric structures And Representation varieties (the GEAR Network)”. L.P.S. was partially supported by NSF DMS 1509693 and NSF CAREER Award DMS 1749013, as well as by the Alexander Von Humboldt Foundation. This material is also based upon work supported by NSF DMS 1440140 while L.P.S. was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2019 semester. Both authors are thankful for the support of the Simons Center for Geometry and Physics during the Spring 2019 program on Geometry and Physics of Hitchin systems. | |
| dc.identifier.citation | Triality for Homogeneous Polynomials. Laura P. Schaposnik and Sebastian Schulz. SIGMA 17 (2021), 079, 14 pages | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2021.079 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2020 Mathematics Subject Classification: 14H60; 31A35; 33C80; 53C07 | |
| dc.identifier.other | arXiv:2009.13573 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/211344 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | Triality for Homogeneous Polynomials | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 079-Schaposnik.pdf
- Розмір:
- 544.27 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: