Стохастическое дифференциальное уравнение в случайной среде

dc.contributor.authorМахно, С.Я.
dc.contributor.authorМельник, С.А.
dc.date.accessioned2020-06-10T17:38:22Z
dc.date.available2020-06-10T17:38:22Z
dc.date.issued2017
dc.description.abstractВ работе рассмотрены решения стохастического дифференциального уравнения Ито в случайной среде. Случайная среда формируется обобщённым телеграфным процессом. Доказано, что исходная задача равносильна системе двух стохастических дифференциальных уравнений с неслучайными коэффициентами. Первое уравнение является уравнением Ито и его решением является исходный процесс. Второе уравнение является уравнением с пуассововской компонентой и его решением является обобщенный телеграфный процесс. Приведены теоремы существования и единственности как сильных, так и слабых решений.uk_UA
dc.description.abstractSolutions of the Ito stochastic differential equation in a random environment are considered. The random environment is formed by the generalized telegraph process. It is proved that the initial problem is equivalent to a system of two stochastic differential equations with nonrandom coefficients. The first equation is the Ito equation, and the initial process is its solution. The second equation is an equation with Poisson process, and its solution is a generalized telegraph process. The theorems of existence and uniqueness of strong and weak solutions are proved.uk_UA
dc.identifier.citationСтохастическое дифференциальное уравнение в случайной среде / С.Я. Махно, С.А. Мельник // Український математичний вісник. — 2017. — Т. 14, № 3. — С. 370-398. — Бібліогр.: 15 назв. — рос.uk_UA
dc.identifier.issn1810-3200
dc.identifier.other2010 MSC. 60H10, 60G57
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/169366
dc.language.isoruuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofУкраїнський математичний вісник
dc.statuspublished earlieruk_UA
dc.titleСтохастическое дифференциальное уравнение в случайной средеuk_UA
dc.title.alternativeStochastic differential equation in a random environmentuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
05-Makhno.pdf
Розмір:
273.91 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: