Moments and Legendre-Fourier Series for Measures Supported on Curves

dc.contributor.authorLasserre, J.B.
dc.date.accessioned2019-02-13T17:42:19Z
dc.date.available2019-02-13T17:42:19Z
dc.date.issued2015
dc.description.abstractSome important problems (e.g., in optimal transport and optimal control) have a relaxed (or weak) formulation in a space of appropriate measures which is much easier to solve. However, an optimal solution μ of the latter solves the former if and only if the measure μ is supported on a ''trajectory'' {(t,x(t)):t∈[0,T]} for some measurable function x(t). We provide necessary and sufficient conditions on moments (γij) of a measure dμ(x,t) on [0,1]² to ensure that μ is supported on a trajectory {(t,x(t)):t∈[0,1]}. Those conditions are stated in terms of Legendre-Fourier coefficients fj=(fj(i)) associated with some functions fj:[0,1]→R, j=1,…, where each fj is obtained from the moments γji, i=0,1,…, of μ.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications. The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html. Research funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement ERC-ADG 666981 TAMING).uk_UA
dc.identifier.citationMoments and Legendre-Fourier Series for Measures Supported on Curves / J.B. Lasserre // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 15 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 42C05; 42C10; 42A16; 44A60
dc.identifier.otherDOI:10.3842/SIGMA.2015.077
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147149
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleMoments and Legendre-Fourier Series for Measures Supported on Curvesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
077-Lasserre.pdf
Розмір:
387.7 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: