Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring

dc.contributor.authorWehefritz-Kaufmann, B.
dc.date.accessioned2019-02-08T20:39:38Z
dc.date.available2019-02-08T20:39:38Z
dc.date.issued2010
dc.description.abstractWe present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has Uq(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest real part. The dynamical critical exponent is 3/2 which is the exponent corresponding to KPZ growth in the single species asymmetric diffusion model.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Proceedings of the XVIIIth International Colloquium on Integrable Systems and Quantum Symmetries (June 18–20, 2009, Prague, Czech Republic). The full collection is available at http://www.emis.de/journals/SIGMA/ISQS2009.html. We would like to thank V. Rittenberg for his continued interest and invaluable discussions and F.C. Alcaraz for sharing his manuscript about the Bethe ansatz with us. We would also like to acknowledge support from the Purdue Research Foundation.uk_UA
dc.identifier.citationDynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring / B. Wehefritz-Kaufmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 38 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 82C27; 82B20
dc.identifier.otherDOI:10.3842/SIGMA.2010.039
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146319
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleDynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ringuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
039-Wehefritz-Kaufmann.pdf
Розмір:
299.47 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: