Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring
dc.contributor.author | Wehefritz-Kaufmann, B. | |
dc.date.accessioned | 2019-02-08T20:39:38Z | |
dc.date.available | 2019-02-08T20:39:38Z | |
dc.date.issued | 2010 | |
dc.description.abstract | We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has Uq(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest real part. The dynamical critical exponent is 3/2 which is the exponent corresponding to KPZ growth in the single species asymmetric diffusion model. | uk_UA |
dc.description.sponsorship | This paper is a contribution to the Proceedings of the XVIIIth International Colloquium on Integrable Systems and Quantum Symmetries (June 18–20, 2009, Prague, Czech Republic). The full collection is available at http://www.emis.de/journals/SIGMA/ISQS2009.html. We would like to thank V. Rittenberg for his continued interest and invaluable discussions and F.C. Alcaraz for sharing his manuscript about the Bethe ansatz with us. We would also like to acknowledge support from the Purdue Research Foundation. | uk_UA |
dc.identifier.citation | Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring / B. Wehefritz-Kaufmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 38 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 82C27; 82B20 | |
dc.identifier.other | DOI:10.3842/SIGMA.2010.039 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/146319 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 039-Wehefritz-Kaufmann.pdf
- Розмір:
- 299.47 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: